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Abstract: Single pixel imaging frameworks facilitate the acquisition of high-dimensional
optical data in biological applications with photon starved conditions. However, they are still
limited to slow acquisition times and low pixel resolution. Herein, we propose a convolutional
neural network for fluorescence lifetime imaging with compressed sensing at high compression
(NetFLICS-CR), which enables in vivo applications at enhanced resolution, acquisition and
processing speeds, without the need for experimental training datasets. NetFLICS-CR produces
intensity and lifetime reconstructions at 128× 128 pixel resolution over 16 spectral channels while
using only up to 1% of the required measurements, therefore reducing acquisition times from
∼2.5 hours at 50% compression to ∼3 minutes at 99% compression. Its potential is demonstrated
in silico, in vitro and for mice in vivo through the monitoring of receptor-ligand interactions in
liver and bladder and further imaging of intracellular delivery of the clinical drug Trastuzumab to
HER2-positive breast tumor xenografts. The data acquisition time and resolution improvement
through NetFLICS-CR, facilitate the translation of single pixel macroscopic flurorescence lifetime
imaging (SP-MFLI) for in vivo monitoring of lifetime properties and drug uptake.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Over the last two decades, computational imaging has experienced an explosive growth thanks to
its aptitude to overcome limitations of conventional imaging methods [1]. Especially, optical
computational imaging has led to the development of new imaging techniques that have greatly
impacted numerous fields including material sciences, computer vision and biomedical sciences
[2]. These technical breakthroughs have been stimulated by the wide availability of new optical
components such as light modulators and/or sensitive digital sensors. Moreover, the emergence of
the theoretical framework of compressive sensing has empowered the implementation of efficient
computational imaging systems [3]. Among all technical approaches, structured light techniques
have played a significant role in advancing this field [4,5]. For instance, the incorporation of
spatial light modulators in the optical chain has led to improved resolution in microscopy [6],
enabled the reconstruction of 4D phase amplitude data [7,8], facilitated hyperspectral microscopy
[9,10] or enabled fast optical tomography of thick specimens [11,12]. Nevertheless, there is still
a strong incentive to develop novel imaging techniques for biomedical applications, that can
acquire high-dimensional data (space, time, phase and spectrum), with increased information
content, such as required in highly multiplexed molecular imaging. [13] However, biological
applications, especially in vivo fluorescence-based imaging applications are characterized by
faint signals due to the scattering and absorptive nature of intact (non-cleared) tissues [14]. One
computational imaging approach that is well positioned to tackle such low signal conditions to
generate these desired high-dimensional datasets is single-pixel imaging [15]. To date, the single
pixel imaging approach has been implemented for various applications ranging from astronomy
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to medical imaging. [16] A single-pixel camera is typically based on an inverse problem that
aims at reconstructing 2D images from measurements that sample the object of interest with a
series of spatially encoded patterns (structured light) and associating these known masks with
the corresponding 1D intensity measured with a single detector. Such arrangement allows the
production of low-cost imaging systems comprised of detectors with fine temporal resolution for
lifetime calculations (for example PMTs, SPADs), hyperspectral adaptability and high sensitivity,
thus permitting the concurrent generation of the desired high-dimensional datasets. Recently,
single-pixel imaging’s potential to simultaneously acquire spatial, temporal and spectral datasets
at the macroscopic level has been demonstrated via the implementation of single-pixel based
Macroscopic Fluorescence Lifetime Imaging (SP-MFLI). It integrates an ultra-fast laser, spatial
light modulators, and a Time Correlated Single Photon Counting (TCSPC) spectrophotometer as
described in [17]. This imaging platform enables the acquisition of dense time-domain data for
functional imaging or lifetime-based molecular imaging for in vivo applications, both in 2D or
3D. [18–20] For a 2D formulation, which is used throughout this work, single pixel imaging
retrieves the hyperspectral fluorescence time domain (TD) information by inverse solving Eq. (1)
for the sample plane x at wavelength λ and time point t with m (m ≤ n) number of patterns where
n represents the total number of pixels for a given resolution, Hmxn represents the pattern matrix
and bλ,tmx1 represents the measurement vector. [17,21]

Hmxn xλ,tnx1 = bλ,tmx1 (1)

The m (m ≤ n) implies that the reconstruction of the sample plane x can take place with less
patterns m and measurements b than the original required n amount of 1D measurements which
equals the number of pixels at the desired resolution. [21]In order to comply to the m (m ≤ n)
condition and alleviate the total acquisition time by reducing the number of acquisition patterns,
compressive sensing (CS) strategies, based on sparse illumination basis and inverse solvers
like the ubiquitously employed TVAL3 [22,23] are needed. Therefore, if only m patterned
measurements out of n are used for reconstruction of the sample plane xλ,tnx1, then the data has
been compressed by a compression ratio (CR) of:

CR =
(n − m)

n
x 100 (2)

This means only CR percentage of patterned measurements are used for retrieving the image
of the sample plane xλ,tnx1. Despite the multiple advantages of single-pixel arrangements like SP-
MFLI and the option to reduce the amount of needed measurements bλ,tmx1(and therefore acquisition
time) through CS, one major drawback is the low reconstruction quality and accuracy of intensity
and lifetime images at very high compression ratios (CRs), which to our knowledge have not been
higher than 50% for resolution n= 32× 32 or 64× 64 pixels in SP-MFLI reconstructions. [17,24]
Such a requirement potentially leads to long acquisition times or ultra-weak signal conditions as
well as long computational times and low resolutions. Therefore, a high compression ratio is
desired since it would allow a decrease in acquisition time, making the SP-MFLI platform more
suitable for fast in vivo imaging, while maintaining or enhancing pixel resolution. Moreover,
due to the ill-posed nature of the inverse solvers, it is typical to employ advanced regularization
techniques, which can be dependent on post hoc selection of tuning parameters. In this regard,
we have recently proposed the use of deep learning to simultaneously reconstruct intensity and
lifetime single pixel images at high processing speed and without the use of parameter constrained
inverse solvers. [24] However, this approach is still dependent on inputting at least 50% of
the spatially coded measurements and therefore limited to low resolutions or high acquisition
times. To overcome this obstacle and accelerate bed-side translation of SP-MFLI, we propose
NetFLICS-CR (Network for Fluorescence Lifetime Imaging with Compressive Sensing at high
Compression Ratio), a deep learning framework that aims to reduce the number of required
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1D measurements and acquisition times for SP-MFLI by more than one order of magnitude
while increasing resolution to 128× 128 pixels. Herein, NetFLICS-CR is tested and validated
within the framework of preclinical small animal studies. Since SP-MFLI can acquire dense
spatial, spectral and temporal data cubes for multiplexed fluorescence molecular imaging, [17]
enhancing the technique is intended to advance the drug development pipelines by enabling
fast and simultaneous monitoring of multiple biomarkers at 128× 128 resolution, as well as
the quantification of targeted drug cellular delivery via the measurement of near infrared (NIR)
labeled receptor-ligand engagement via Föster Resonance Energy Transfer (FRET). [25] First,
we report on the design and in silico training as well as validation of NetFLICS-CR. Then,
we establish NetFLICS-CR robustness by reconstructing controlled in vitro experimental data
never used during the in silico training phase. Subsequently, NetFLICS-CR is used to quantify
iron-bound transferrin (Tf) based target engagement in the liver and bladder of live, intact mice.
Lastly, we report its applicability to monitor in vivo drug delivery via SP-MFLI FRET in mice
bearing breast cancer tumor xenografts. Specifically, intracellular delivery of trastuzumab (TZM)
was quantified in human epidermal growth factor receptor 2 (HER2)-positive tumors in live intact
mice. TZM is an antibody that binds to HER2 on the surface of cancer cells. Notably, TZM is a
FDA-approved drug for the treatment of metastatic breast and gastric cancer that overexpress
HER2 [26].

2. Methods & results

2.1. SP-MFLI setup

The used SP-MFLI setup has been previously described in [17,21]. The system is used in its
reflectance configuration with widefield illumination and structured light detection in the NIR
range. The illumination is accomplished through a DMD-based pico-projector (PK101, Optoma,
CA) by using a Mai Tai HP laser (Spectra Physics, CA) with 690 nm to 1040 nm pulsed excitation
at 80MHz repetition rate. The emissions from the sample plane are detected in a structured
arrangement by a D4110 DMD (Digital Light Innovations, TX) and directed towards a fiber
bundle connected to a Czerny-Turner type spectrophotometer (MS125, f-number: 3.7, Newport
Optics, CA) that focuses the first-order diffracted light into a multi-anode PMT detector with
active area of 16× 16mm (PML-16-C, Becker & Hickl GmbH, Germany), consisting of 16
detection channels. The signals from the PMT are relayed to a TCSPC unit (SPC-150 and
DCC-100, Becker & Hickl GmbH, Germany) to record the Time Point Spread Functions (TPSFs)
generated from each of the detection channels.

2.2. TVRecon: TVAL-CS based reconstruction workflow

In order to evaluate NetFLICS-CR results versus a conventional CS based inverse solving method,
the TVRecon (TVAL based reconstruction) approach is employed in parallel. TVRecon is
a method for intensity and lifetime image reconstruction composed of two main algorithms,
TVAL3 inverse solver and Least-Squares Minimization (LSQR) algorithm. TVAL3 stands for
“Total Variation Minimization by Augmented Langranian and Alternating Direction Algorithms”,
which is a Matlab inverse solver that helps retrieve the image sample plane xλ,tnx1 (Eq. (1))
from its degraded acquisitions. More information about TVAL3 mathematical model can be
found in [22]. It is applicable to single-pixel imaging, where the sample plane is described by
pattern matrix Hmxn with sparsity constraints. SP-MFLI output data bλ,tmx1 is composed of a set
of Time-Point-Spread-Functions (TPSFs) and their recorded photon counts for each detection
wavelength λ over 256 time points (t). One of these sets is generated per recorded pattern number
m. The CS pattern basis used throughout this work will be the Hadamard Ranked basis, as it has
previously demonstrated high performance for parallel acquisition of SP-MFLI data. [23] One
important aspect of this workflow is that TVRecon is highly dependent on user defined parameters
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for TD reconstruction of xλ,tnx1 through TVAL3. Furthermore, in order to obtain lifetime, each
pixel TPSF in xλ,tnx1must be subsequently fitted by a separate Least-Squares-minimization (LSM)
algorithm for lifetime reconstruction. More information on the optimization for TD reconstruction
through TVAL3 and further quantification of lifetime is provided in Appendix A.

2.3. NetFLICS-CR: architecture design

We recently demonstrated that SP-MFLI sequential image reconstruction tasks could be performed
efficiently and simultaneously using deep learning (DL). Indeed, with NetFLICS [24], a
Convolutional Neural Network (CNN), single pixel raw fluorescence data can be reconstructed
into intensity and lifetime images in a single workflow and without the need of parameter
optimization. Compared to the TVRecon workflow and when using 50% of the patterns for
a 32× 32 resolution, NetFLICS produced higher quality reconstructions even at low photon
counts and at computational speeds 4 orders of magnitude faster. Despite these promising initial
results, NetFLICS only reconstructs 32× 32 images at a fixed compression ratio of 50% (512
measurements out of 1024). Even-though the increase in processing speed is essential to extend
HMFLI for clinical in vivo settings, it is necessary to simultaneously increase resolution beyond
32× 32 pixels while decreasing the acquisition time.
Herein, a new CNN architecture, NetFLICS-CR, as displayed in Fig. 1(a), is proposed to

retain the fast processing speed for simultaneous intensity and lifetime retrieval but reconstruct
128× 128 pixels while using compression ratios (CRs) of up to 99% to reduce acquisition time.
For instance, for a 128× 128 resolution, a 90% CR uses 1640 patterned measurements out of
16,384 while a 99% CR uses only 163 out of 16,384 or 1% m out of n measurements. (Eq. (1))
NetFLICS-CR is structured in a similar arrangement to NetFLICS [24], therefore retaining the
three branched structure, with a common segment that derives into separate intensity and lifetime
branches. Despite the structure similarity, the kernel sizes have been modified to account for
the increase to 128× 128 pixels, while for network training the common branch allows to input
SP-MFLI simulated training data with different CR percentages. Moreover, to increase the
training robustness on the lifetime branch, 2D Separable Convolutions [27] have been used to
replace 2D Convolutions in order to better extract the lifetime features along the time dimension
of the data. The intensity branch is composed of a single ResBlock [28] and ReconBlock [29]
that yields the reconstructed 128× 128 intensity image. The lifetime branch contains a ResBlock,
a double ReconBlock structure and an additional 1D convolutional layer continued by a 2D
separable convolution. The 1D convolutional layers are followed by batch normalization [30]
and ReLU [31] activations. For training, the EMNIST dataset [32,33] is used as the spatial
model to generate 128× 128 pixels images. Then, at each pixel, fluorescence time-domain data is
simulated using an exponential fluorescent decay model convolved with an HMFLI instrumental
response function (IRF). The architecture and training process are detailed in Appendix B. For
network training and validation per CR, 40,000 in silico TD samples were generated with 32,000
used in training (in batch sizes of 10 limited by GPU capability) and 8,000 in validation (a
sample refers to an EMNIST image with an intensity and fluorescence decay range per pixel;
therefore, a 128× 128× 256 array). The single pixel measurements are generated by using Eq. (1).
To establish the compression of NetFLICS-CR, only a subset m of the pattern basis Hmxn is
employed for generating the single pixel measurements bλ,tmx1. In all cases, the Hadamard Ranked
basis (patterns ranked from low to high spatial frequency) is used. [23] Therefore, a 99% CR
corresponds to only using the first 1% (m= 163) of the ranked Hadamard basis, while 90% CR to
using the first 10% (m= 1640).
The number of raw single pixel measurements considered per CR is varying as displayed in

Appendix B. Note that the CR operates on the spatial dimension only. The training and validation
for both intensity and lifetime branches as evaluated through Mean Absolute Error (MAE) are
displayed in Fig. 1(b) per CR. Additionally, the process was repeated 5 times per CR to evaluate
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Fig 1. a) Overall NetFLICS-CR block architecture: b) Mean Absolute Error (MAE) 
for intensity and lifetime training - validation curves at different CRs for 5 different 
training routines. Solid colors represent training curves while transparent ones 
represent validation curves. Epoch number was controlled through early-stopping 
during network training.  

The number of raw single pixel measurements considered per CR is varying as displayed in 
Appendix B. Note that the CR operates on the spatial dimension only. The training and 
validation for both intensity and lifetime branches as evaluated through Mean Absolute Error 
(MAE) are displayed in Figure 1(b) per CR.  Additionally, the process was repeated 5 times 
per CR to evaluate training stability. The results indicate, for both intensity and lifetime, that as 
the CR increases the MAE also increases, which is expected as there is less data to reconstruct 
from. The training and validation curves converge in similar MAE values for the 5 different 
trainings for each CR, as shown through the solid color shading for training curves and 
transparent color for validation curves (Figure 1 (b)). The data generation and network training 
codes are available upon request to the authors.  
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Fig. 1. a) Overall NetFLICS-CR block architecture: b) Mean Absolute Error (MAE) for
intensity and lifetime training - validation curves at different CRs for 5 different training
routines. Solid colors represent training curves while transparent ones represent validation
curves. Epoch number was controlled through early-stopping during network training.
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training stability. The results indicate, for both intensity and lifetime, that as the CR increases the
MAE also increases, which is expected as there is less data to reconstruct from. The training and
validation curves converge in similar MAE values for the 5 different trainings for each CR, as
shown through the solid color shading for training curves and transparent color for validation
curves (Fig. 1 (b)). The data generation and network training codes are available upon request to
the authors.

2.4. In silico reconstructions and quantification

To evaluate NetFLICS-CR accuracy in terms of image reconstruction at each compression ratio,
400 new TD in silico samples (different from the training and validation set), were reconstructed.
The same samples were also reconstructed with the two-step TVRecon procedure, yielding an
intensity and lifetime image per CR. The results of both methods were thresholded for background
to 5% of the maximum intensity value and compared versus ground-truth through the Structural
Similarity Index Matrix (SSIM) metric, which for an ideal reconstruction should equal 1. [34]
The 128× 128 intensity and lifetime reconstructions for the three highest compression ratios are
displayed for each method in Fig. 2(a) for an example simulated data set. The average SSIM for
the sample sets is shown in Fig. 2(b) for intensity and lifetime, NetFLICS-CR and TVRecon
methods.
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Fig 2. a) Intensity and lifetime reconstructions versus ground-truth (GT). One of 400 
reconstructed samples displayed for visualization. b) Average intensity and lifetime 
SSIM values calculated versus ground-truth at different CRs: 90%-1,640, 92%-
1,311, 94%-983, 96%-655, 98%-327 and 99%-163 out of 100%-16,384 patterns). 
For NetFLICS-CR the legends 1-5 indicate results for the same in silico sample-set 
for five different trainings. Intensity and lifetime colorbars in (a) apply all 
reconstructions. 
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and CR is plotted. SSIM values for both intensity and lifetime are higher than 0.8 at 99% CR 
and the SSIM values increase close to 0.9 as the CR decreases to 90%, which is expected due 
to an increase in acquired signal. Of note, SSIM values for lifetime are higher than those for 
intensity. This might be attributed to the higher range in simulated intensity values compared 
to lifetimes (also representative to experimental conditions). On the other hand, for all cases, 
TVRecon SSIM values are below 0.8 at all CRs. Note that the TVRecon method requires 
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Fig. 2. a) Intensity and lifetime reconstructions versus ground-truth (GT). One of 400
reconstructed samples displayed for visualization. b) Average intensity and lifetime SSIM
values calculated versus ground-truth at different CRs: 90%-1,640, 92%-1,311, 94%-983,
96%-655, 98%-327 and 99%-163 out of 100%-16,384 patterns). For NetFLICS-CR the
legends 1-5 indicate results for the same in silico sample-set for five different trainings.
Intensity and lifetime colorbars in (a) apply all reconstructions.
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Since NetFLICS-CR was trained 5 times per compression, one SSIM value per each training
and CR is plotted. SSIM values for both intensity and lifetime are higher than 0.8 at 99% CR and
the SSIM values increase close to 0.9 as the CR decreases to 90%, which is expected due to an
increase in acquired signal. Of note, SSIM values for lifetime are higher than those for intensity.
This might be attributed to the higher range in simulated intensity values compared to lifetimes
(also representative to experimental conditions). On the other hand, for all cases, TVRecon
SSIM values are below 0.8 at all CRs. Note that the TVRecon method requires selection
of the best regularization parameters, which were optimized to values yielding the highest
SSIM intensity reconstructions versus ground-truth. After optimization and TD reconstructions,
LSM was applied to yield lifetime images. This process is shown and further explained in
Appendix A. Overall, the in-silico results with known ground-truth reconstructions indicate a
better performance for NetFLICS-CR for both intensity and lifetime reconstructions with SSIM
values always above 0.8.

2.5. In vitro fluorescence reconstructions and quantification

To test the experimental performance of NetFLICS-CR in vitro and the effect of compression
on overall acquisition time, a phantom composed of continuous letters “R”, “P” and “I” was
used. Details of the phantom preparation are provided in Appendix C. Letters R and I contained
Alexa Fluor 750 (AF750; ThermoFisher Scientific, A33085) dye while letter P was filled with
HITCI (Sigma Aldrich, 252034). The expected lifetime values have been previously reported
according to studies with these dyes and buffers. Expected average values of 0.50± 0.017ns for
AF750 and 0.92± 0.018ns for HITCI are described in [23] for lifetime quantified with an external
gated-ICCD camera. Additionally, values of 0.48± 0.02ns for letter R, 0.47± 0.03ns for I with
AF750 and 0.84± 0.07ns for P with HITCI are reported in [24]. Therefore, on average, expected
values are 0.49± 0.022 for RI-AF750 and 0.88± 0.044 for P-HITCI. The phantom was excited at
740 nm with 24 mW/cm2 power on a field of view of 35× 35mm.The samples were acquired
with the SP-MFLI system using an acquisition time of 0.5 s per pattern, for a total of ∼3 minutes
for a 99% CR, ∼6 minutes for a 98% CR and ∼11 minutes for a 96% CR. Lower CRs were
not considered as the main goal was to reduce experimental acquisition time through high data
compression. Acquisition patterns were displayed on the digital micromirror device (DMD) as a
positive and a ‘negative’ part. The negative part is the same pattern but with 0’s inverted to 1’s
and vice-versa. Since Hadamard patterns are composed of 1’s and -1’s and the DMD is unable to
display values below 0, the negative part will be used to calculate the correct signal as measured
with the original patterns. Therefore, respective pattern numbers of 163× 2 for 99% CR, 327× 2
for a 98% CR and 655× 2 for a 96% CR were acquired. The raw data was reconstructed using
both TVRecon and NetFLICS-CR workflows. For TVRecon, Appendix A shows the primary
and secondary penalty parameters that were used. For the lifetime quantification, TD pixels
obtained from TVRecon with more than 5% counts of the maximum intensity value were fitted in
order to obtain the lifetime values. Since this is a challenging minimization problem, the initial
lifetime value was set to 0.8 ns and the fitting range bounded to [0.2-1.4] ns. This range covers
the expected lifetime ranges of both letters at the same time. For NetFLICS-CR the in silico
trained network was used at each CR to reconstruct both intensity and lifetime images (i.e. the
network was not trained using experimental data). The reconstruction time of NetFLICS-CR
was ∼10 s for 16 spectral channels, while the full TVRecon approach took ∼80 s per spectral
channel (for a total of ∼21 minutes). After intensity reconstruction, for both methods, pixels with
less than 20% of the maximum intensity value were set to 0 as background threshold. Images
were then normalized to the maximum value for SSIM comparison to an experimental intensity
ground-truth (NIR CCD image of the sample plane).

The results for intensity and lifetime reconstructions for both methods are displayed in Fig. 3(a).
As shown in Fig. 3(b), SSIM values at 99%, 98% and 96% CRs are higher for NetFLICS-CR
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than for TVRecon reconstructions. In contrast to intensity, no lifetime ground-truth can be
obtained in experimental settings. However, it is expected based on the experimental design that
the lifetime will be homogeneous within each letter. Additionally, letters R and I should yield a
similar lifetime as they both contain AF750 dye from the same stock solution. Results for lifetime
reconstructions are displayed as histograms with a distribution per CR and method in Fig. 3(c).
Two marked histogram peaks are located close to average “expected” lifetimes of 0.49± 0.022
for AF750 (letters R and I) and 0.88± 0.044 for HITCI (letter P). In contrast to TVRecon, at
these CRs, NetFLICS-CR resulted in sharper distributions around the average “expected” values
indicating a more accurate lifetime quantification per fluorophore. Note that the pixels used for
reporting the reconstructed lifetimes are the ones used for the intensity comparison. Hence, these
in vitro results indicate that NetFLICS-CR, even if only model trained, retrieves more accurate
lifetime and intensity values when applied to experimental data sets at high CRs and 128× 128
resolution. Additionally, NetFLICS-CR leads to a significant reduction in the acquisition time.
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Fig. 3. a) In vitro SP-MFLI Experiments for RPI phantom: a) Intensity and lifetime
reconstructions for RPI phantom per CR and acquisition time. Reconstructions for NetFLICS-
CR and TVRecon methods displayed b) SSIM values calculated comparing reconstructed
intensity images per method and CR versus external CCD ‘ground-truth’. c) Distribution of
lifetime reconstructions per CR andmethod for RPI phantom. Twomain lifetime distributions
observed (P and R/I). Expected values based on [23,24] for same dyes and buffer. Intensity
and lifetime colorbars in (a) apply for both TVRecon and NetFLICS-CR reconstructions.
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2.6. In vivo Transferrin uptake at organ level

For the first in vivo validation the performance of NetFLICS-CR was tested in reconstructing
receptor-ligand engagement of a Transferrin (Tf) – AF700 conjugated probe injected in a live
intact mouse. The probe is designed to bind to Tf receptors located in the liver. In vivo sample
preparation for imaging is further explained in Appendix D. The mouse was imaged using
the SP-MFLI platform after 6 hours post-injection at a minimum CR of 98% with ∼6 minutes
acquisition time at 700 nm and 31mW/cm2 excitation for a 38× 38mm FOV. Therefore, 99%
CR reconstructions could be later retrieved to represent acquisitions of ∼3 minutes, respectively.
Results for the Tf-AF700 mouse experiments for a 99% CR are displayed in Fig. 4 and in
Appendix E (Fig. 9) for 98% CRs. The liver is a major site for iron homeostasis, so its Transferrin
(Tf) receptor levels are high, leading to significant Tf uptake [35]. In addition, due to the liver’s
detoxifying function, changes in its microenvironment, such as in pH and ion composition,
consistently result in a significant quenching. In contrast, urinary bladder, an excretion organ,
should not cause donor fluorescent lifetime decrease, as shown by previous studies. [35–37] Both
TVRecon and NetFLICS-CR methods were employed for comparison. NetFLICS-CR intensity
and mean lifetime images were directly outputted from the network at CRs of 99% and 98%.

The same trainings used for in silico and in vitro SP-MFLI experiments have been used for in
vivo Tf-AF700 NetFLICS-CR reconstructions. On the other hand, TVRecon intensity images
were reconstructed by TVAL3 inverse solver and mono-exponentially fitted for lifetime (as only
Tf-AF700 probe is being used) through LSQR with initial values of 0.9± 0.5 ns. Reconstructions
have been overlaid over a grayscale intensity image of the FOV acquired with an external CCD
camera. In order to correctly quantify and compare between CRs and methods, the regions of
interest (liver and bladder) have been set as constant using the external CCD “ground-truth”
image in Fig. 4(a). For this image, the values below 50% of the maximum intensity are set to
zero as a background threshold. Then it is turned into a binary image that will multiply each of
the reconstructions per CR/reconstruction method. This way the number of pixels in the desired
region of interest are constant. Therefore, a total of 483 pixels are selected for bladder lifetime
quantification and 2251 pixels for the liver. Final intensity and lifetime images are displayed in
Fig. 4(b). Each intensity image is normalized to its own maximum value. The average lifetime
and standard deviation of liver/bladder is shown in Fig. 4(c) per CR and reconstruction method.
TVRecon results display little to none lifetime change between liver and bladder for both

CRs at 719 nm and 760 nm wavelength channels. Though, previous studies have reported on
the quenching of Tf-AF700 in the liver due to the high levels of TfR-Tf binding in hepatic
cells. Conversely, the bladder is an intra- and inter-subject control as Tf-AF700 quenching is
reduced due to excretion of degraded Tf and free dye. For TVRecon the quantified lifetime
values fall below the expected lifetimes for Tf-AF700 [24,36,38,39]. In contrast, NetFLICS-CR
which describes an average lifetime of 1.2 ns for the bladder (unquenched) and a decrease in
Tf-AF700 lifetime for the liver (quenched), provide outputs that are in accordance with prior
work. Moreover, at the 760 nm control channel, NetFLICS-CR shows little to none intensity and
lifetime reconstructions, while TVRecon shows intensity reconstructions for the liver and bladder
regions, as well as similar lifetime values to the 719 nm channel for both organs. From Appendix
F (Fig. 10) the first widefield raw measurement across wavelength channels is displayed, with
channel 3 representing 719 nm and 13 representing 760 nm. Here the photon counts recorded
for 760 nm are 12 times less than the 716 nm peak channel for Tf-AF700. However, when these
counts are integrated over time channels, which is what TVRecon does for obtaining the 2D
intensity reconstruction, it might be possible that intensity is retrieved as the counts difference is
reduced to 6.5 times below the max peak counts. Thus, even though NetFLICS-CR reconstructs
some intensity pixels at the 760 nm channel, it would benefit from including a lower count training
set with characterized system noise, which are the further investigative steps for this architecture.
Since the TPSFs per pixel in TVRecon are inverse solved through TVAL3 and then fitted through
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Least-Squares minimization, we have displayed in Appendix F how the TVAL retrieved TPSF
looks like for the maximum intensity pixel located at [X= 98, Y= 106 ] for the time domain
reconstruction at 760 nm. Even though a fit is obtained the TPSF is highly noisy compared to
the IRF. Therefore, it means that either a wider range of parameters besides µ and ß need to
be optimized to inverse solve the best signal to noise ratio TPSF or the LSQR minimization
algorithm needs further optimization to discard fits with “unacceptable” residuals. In this regard,
we believe NetFLICS-CR might be more accurate at describing the 760 nm channel.

2.7. In vivo TZM drug uptake in tumors

We finally investigated the performance of SP-MFLI+NetFLICS-CR in a very challenging
scenario, the quantification of TZM binding to a HER2-positive [38] AU565 tumor xenograft
in a live intact mouse, upon intravenous injection of TZM-AF700 (Donor) and TZM-AF750
(Acceptor). The mouse was imaged at 24 and 102 hours post-injection to obtain insights on
whether the technique could localize tumors and quantify in vivo drug uptake in dim conditions.
AF700-TZM and AF750-TZM FRET pair was intravenously injected at a 2:1 acceptor to donor
ratio in an athymic nude mouse bearing an AU565 tumor xenograft. Further explanation of
the xenograft preparation is shown in Appendix D. The mouse was imaged in vivo with a
minimum CR of 98%. The excitation was set to 31 mW/cm2 at 700 nm for a 38× 38 mm FOV,
yielding a total acquisition time of ∼6 minutes (256 TD temporal bins and 16 spectral channels).
Intensity and lifetime images are reconstructed per time point for both donor and acceptor peak
channels at respective detection wavelengths of ∼719 nm and ∼760 nm. NetFLICS-CR intensity
and mean lifetime reconstructions were directly resolved, while TVRecon TD intensity data
was inverse-solved by TVAL3 as explained in Appendix A. For TVRecon lifetime, each pixel
was bi-exponentially fitted to return A1, A2,τ1and τ2 values, which respectively represent the
percentage of FRETing Donor (FD%), Acceptor and their short and long lifetime components. To
directly compare to the mean lifetime output of NetFLICS-CR, mean lifetime τmean was calculated
through Eq. (4). After reconstruction with both methods, intensity images were normalized and
the region of interest defined by an external CCD intensity image of the sample plane. The
resulting region of interest was also applied for lifetime reconstructions. FRET occurring between
donor and acceptor fluorophores would lead to quenching of the donor intensity and reduction of
donor lifetime by the acceptor at the targeted tumor area. [39] Therefore, accessing both donor
and acceptor channels could provide insights on the level and distribution of FRET events within
the tumor. NetFLICS-CR and TVRecon reconstructions at the tumor xenograft area per each
time-point are shown in Fig. 5(a) for 99% CR. Quantification for the mean lifetime values at
the tumor region per post-injection time, reconstruction method, detection channel and CR is
summarized in Fig. 5(b) and full set of reconstructed images displayed in Appendix G (Fig. 11).
In order to control the descriptive statistics, means account for the highest 80-pixel values

in the tumor area per method and reconstruction type. According to the in vitro hyperspectral
behavior of Tf-AF700 and Tf-AF750 and previously reported levels of FRET interaction between
them, it is expected that the donor mean lifetime (expected value of ∼1 ns) will decrease as it is
quenched by the acceptor (expected value of ∼0.5 ns), but the acceptor lifetime would minimally
change. [17,24,40] In order to validate the expected values for the peak wavelengths, individual
AF700 donor and AF750 acceptor probes were quantified in vitro along the 16 detection channels
as displayed in Appendix H (Fig. 12) where lower detection channels are dominated by donor
emission, while upper ones by acceptor emissions. Concentrations of AF700 and AF750 followed
the previously described 20 µg and 40 µg concentrations used to yield a 2:1 ratio. Both average
intensities and lifetimes are displayed per each detection channel ranging from channel 1 at
715nm to channel 16th at 783nm, with 4.5nm wavelength space between channels.

As shown in Fig. 5(b), at 24 hours p.i. in the tumor region there is a decrease in lifetime from
donor to acceptor channel. Considering ligand/target engagement in the xenograft region to be
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heterogenous, NetFLICS-CR better approximates the expected values at 99% and 98% CRs,
where TVRecon shows regions with no variation, which could indicate an over-regularization
despite optimal parameter selection. At 102 hours p.i. donor quenching is expected due to the
binding of donor and acceptor labeled TZM to HER2 dimerized receptors, resulting in a decrease
in donor lifetime, as the drug undergoes internalization and endocytic trafficking. Conversely,
since lifetime is independent of intensity and concentration, even if the signal of the acceptor
decreases, lifetime should minimally change. Of note, from 24 hrs to 102 hrs both the donor
and acceptor channel raw fluorescence signals decrease as displayed in Appendix I (Fig. 13).
Since the Hadamard Ranked basis is organized by spatial frequency, Pattern 1 is expected to
yield the signal with the most intense fluorescence decay. At 24 hours the TPSF at the donor
channel is less intense than the TPSF at the acceptor channel. On the contrary, at 102 hours
post injection, despite using the same acquisition settings used at 24 hours (excitation at 700
nm and 31 mW/cm2 for a 38× 38 mm FOV), both donor and acceptor TPSFs are below 200
photon counts.This is expected as the fluorescently tagged drug is excreted from the live animals
leading to reduced local concentrations overtime. Additionally, the decrease in donor lifetime
from 24 hrs to 102 hrs and acceptor lifetime (Fig. 5(b)) is suggestive of an increased fraction of
AF700-TMZ undergoing FRET, i.e. intracellular delivery. This is expected since as the overall
concentration of AF700-TMZ is decreasing due to excretion out of the animal, the intracellular
fraction remaining is increasing over the extracellular fraction. Though, additional analysis and
experiments of TZM engagement at the macroscopic level with immunohistochemistry validation
are needed to have certainty of the amount of FRET expected at each timepoint. Last, even
though Gaussian noise is included when simulating the fluorescent decays, we expect for future
training sets to more accurately approximate the noise model and bi-exponential nature of the
experimental TZM TPSFs; leading to overall improvements for lower photon count settings
(tumor xenografts).

3. Discussion and conclusions

In conclusion, we report a novel CNN architecture, NetFLICS-CR, which efficiently reduces
the acquisition time of high-dimensional SP-MFLI optical molecular data, while simultaneously
producing 128× 128 hyperspectral intensity and lifetime maps. Besides offering a fit free solution
to the image formation paradigm, NetFLICS-CR led to a reduction in SP-MFLI acquisition times
from ∼2.5 hours at 50% CR to ∼3 minutes at 99% CR. Despite the challenging photon-starved
nature of in vivo acquisitions, NetFLICS-CR was able to reconstruct intensity and lifetime
maps that were in accordance with the expected biological outcome. Additional benefits of
NetFLICS-CR include it not requiring any user input optimization in contrast to fitting techniques
and reconstructing intensity and lifetime images across 16 spectral channels in an approximate
∼10s span compared to ∼21 minutes needed for the TVRecon approach. This paves the way to a
more standardized SP-MFLI platform for in vivo tissue characterization. It is worth noting that
even-though a lifetime value can be directly calculated by fitting the raw TPSFs, to recover the
intensity and lifetime spatial distribution it is necessary to retrieve it through the pattern weighted
measurements either by a fit free paradigm as NetFLICS-CR or an inverse solver/fit based one
like TVRecon.

Despite being able to describe the expected biological outcome, future studies with more mice
are needed to understand the amount of uniformity expected from each lifetime region and how
this varies across mice in both Transferrin and TZM based probes. Furthermore, it is necessary to
further study the ideal intensity and lifetime-range for training NetFLICS-CR based on intensity
and SNR variations of the targeted application, especially for very faint signals. Future work will
pursue a further increase in resolution (beyond 128× 128) as well as a decrease on the current
∼3-minute minimum acquisition time (at 0.5s exposure per pattern) through optimizing the
system’s detection gating and binning parameters [41]. Beyond preclinical imaging, such a deep
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learning paradigm is expected to greatly facilitate the translation of these new analytical tools to
the clinical settings where acquisition and processing times are critical for patient intervention.
Overall, this work illustrates how CNNs can play a central role in reducing the acquisition times
for single-pixel multidimensional imaging at large, especially SP-MFLI. Additionally, we foresee
that the NetFLICS-CR architecture herein described can be useful to guide other deep-learning
developments in the field of compressed sensing and multiplexed imaging.
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Optimization of primary µ(mu) and secondary β(beta) penalty parameters for TVAL3 based
on intensity SSIM for 400 simulated samples.
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Appendix A: TVRecon workflow

The data displayed in Fig. 6(a) is the structure of the input for both TVRecon and NetFLICS-CR.
Further explanation of the optical system and its arrangement to yield this type of output is
provided in [17]. For TVRecon, the input is translated into one TPSF per pixel of the desired
resolution by inverse solving Hmxn xλ,tnx1 = bλ,tmx1for xλ,tnx1as displayed in Fig. 6(b). The TVAL3
regularization terms used throughout this manuscript follow the isotropic model. Since the
algorithm is highly dependent on these terms, the primary and secondary penalty parameters,
being the most important according to the developers [22], are tuned. According to the developers
suggestion the primary penalty µ and secondary penalty β parameters should be ideally set
between 2ˆ4 and 2ˆ13. Therefore, for the 400 samples used during simulation experiments,
Time-Domain reconstructions were made for all possible combinations of µ and β parameters
within the suggested range. The Continuous-Wave intensity reconstructions were later evaluated
versus ground-truth through SSIM and the resulting values averaged for the full sample set.
The combination yielding the highest SSIM value (closer to 1) was used for Time-Domain
reconstructions. The average sample set SSIMs for the possible combinations are displayed in
Fig. 6(c). Therefore, values of µ= 2ˆ7 and β= 2ˆ 8 were employed. Depending on the type of
fluorescent probe used for experiments, for the second part of the TVRecon method, LSQR
(Least-Squares Minimization) will be used to produce a mono-exponential or bi-exponential fit
to each pixel TPSF of xλ,tnx1 to retrieve the lifetime values per pixel. For a bi-exponential model:

TPSF = IRF ∗ [A1exp(−t/τ1) + A2 exp(−t/τ2)] (3)

The TPSF on each pixel in xλ,tnx1 represents the convolution (*) of the IRF with a bi-exponential
(or mono-exponential) model composed of τ1 short lifetime and τ2 long lifetime components, in
respective fractions of A1 and A2, such that A1+A2= 1. Therefore, the mean lifetime can be
obtained through:

τmean =

[(
A1
100

)
τ1 +

(
A2
100

)
τ2)

]
(4)

The optimization is done using Matlab’s “fmincon” [42] where upper and lower bounds have to
be initialized. The initialization values correspond to the long and short lifetimes in nanoseconds,
which are estimated factory values. Each value has a parameter bound with +/- units. These
values are specified in the main text for each experimental set.

Appendix B: NetFLICS-CR training and specifics

Since the physics behind single-pixel measurement generation is known, NetFLICS-CR is trained
on simulated single-pixel acquisitions. EMNIST [32,33] figures consisting of digits and letters
are re-scaled from 28× 28 pixels to the desired resolution, in the case of NetFLICS-CR, of
128× 128 pixels. Furthermore, data is augmented by randomly clustering many of the rescaled
EMNIST figures and then resizing the space to 128× 128 by down-sampling. The images are
rotated, flipped, rescaled and organized randomly across the 128× 128 space so that no repeating
figures exist. To mimic the single-pixel data generation, 128× 128 intensity images randomly
varying from 200 to 800 photon counts and their corresponding lifetime images with random
values from 0.3 to 1.2 nanoseconds were used. These values aim to cover typical ranges obtained
in the experimental sets. Since the time gates used in the experimental procedure are kept at 256
with intervals of 32.6 ps, a fluorescence decay curve with Poisson noise can be simulated for
each pixel matching the given intensity and corresponding lifetime values of the “sample space”.
TPSFs were “acquired” by convolving the decay with an experimentally acquired IRF. To simulate
single-pixel acquisition, weights with value -1 or +1 given by the set of used “illumination
Ranked Hadamard” patterns [23], are applied to the sum of all TPSFs from the “sample space”.
As using the full pattern basis for a 128× 128 resolution is not experimentally viable, a total of
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1800 Ranked Hadamard patterns were used for data generation in order to cover a minimum CR
of 90% for training. An example of these sets is shown in Fig. 7(b). A total of 40,000 sets were
used, 32,000 for training and 8,000 for validation. Each sample took approximately 2 hours to
generate through MATLAB. After the samples are generated, the training per compression ratio
is achieved by modifying the “pattern dimension” of the CW part of the data set as exemplified
in Fig. 7(a) for different CRs. The common branch of NetFLICS-CR translates the input of size
CNx256xPN, where PN represents the pattern number and CN number of detection channels,
into 2D temporal data of dimensions 256× 16384, which corresponds to the number of pixels in
a TD 128× 128 space.
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Fig. 7. (a) ContinuousWave visualization of simulated raw data and parts of themeasurement
that will be used to retrieve reconstructions for each compression ratio. (b) Example of
simulated intensity and lifetime image corresponding to (a) for 128× 128 resolution.

Additionally, in this branch, sparsity features are extracted from the input, through a 1D
convolutional layer with 16384 size one 1D convolutional kernels that operate along the time
dimension. Then batch normalization and ReLU activations are used. The output of segment 1 is
permuted to 16384× 256, so that it can be reshaped into the intensity branch to 128× 128× 256,
which is one TPSF per pixel. One ResBlock of 256 kernels with size 3× 3 is followed by a
ReconBlock formed by respective kernel numbers and sizes of 64 and 1× 1, 32 and 1× 1 and
1 and 3× 3, which results in the 128× 128 intensity image per detection channel. Parallel to
intensity reconstruction, the transposed output from the common segment is received by a 1D
convolution with 512 kernels of size 1 and batch normalization/ReLU activation. The output is
further reshaped into 128× 128× 512, which is the input for a separable 2D convolution with
256 kernels of size 1× 1 and followed by a ReLU activation [43]. Then a ResBlock and two
ReconBlocks are used to yield the 128× 128 lifetime image per detection channel. Using an
NVIDIA Titan XP GPU, NetFLICS-CR took an approximate of 17 hours for total training for 6
CRs (99%, 98%, 96%, 94%, 92%, and 90%).
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Appendix C: in vitro experiments and sample preparation   
The RPI phantom displayed in Figure 8 is composed of continuous letters “R”, “P” and “I” 
with respective volume capacities of 149, 124 and 81 µL. Alexa Fluor 750 (AF750; 
ThermoFisher Scientific, A33085) dye was prepared with PBS at 2.08 µM concentration to fill 
Letters “R” and “I”, while HITCI (Sigma Aldrich, 252034) at 40 µM was used for letter “P”. 
The initial concentration of HITCI was monitored versus AF750 intensity under an external 
NIR CCD camera and was diluted with ethanol until matching the intensity of both dyes. After 
filling the phantom with the fluorescent dyes, it was covered with a thin layer of clear wrap 
paper to minimize evaporation effects, which considering the intended acquisition times should 
be minimal.  

 
Figure 8. RPI phantom dimensions and volume capacities per letter. For imaging it 
is centered within the 35x35mm FOV of the SP-MFLI system. 

 

Appendix D: in vivo sample preparation and additional results  
D.1 Ligand labeling. Human Holo Transferrin-Tf (Sigma Aldrich) and Trastuzumab-TZM 
(Genentech) were conjugated to AF700 donor only for the Holo Tf probe and both AF700 donor 
and AF750 acceptor (Life Technologies) for the TZM probe, through monoreactive N-
hydroxysuccinimide ester to lysine residues in the presence of 100 mM Na bicarbonate, pH 8.3, 
according to manufacturer’s instructions. The probes were purified by desalting columns and 
Amicon Ultra-4 microconcentrators (Millipore). The degree of labeling of the probes was 
assessed by spectrophotometer DU 640 (Beckman Coulter, Fullerton, CA, USA). The average 
degree of labeling was no more than 2 fluorophores per Tf or Trastuzumab molecule. All probes 
were normalized to concentration 1 mg/mL in phosphate-buffered saline pH 7.6 and filter 
sterilized.  
D.2 Cell culture. Breast cancer cell line AU565 was purchased from ATCC (CRL-2351) and 
cultured in RPMI 1640 medium supplemented with 10% FBS in 5% CO2 at 37oC in a 
humidified incubator for less than 12 passages. 
D.3 Animal experiments. All animal procedures were conducted with the approval of the 
Institutional Animal Care and Use Committee at both Albany Medical College and Rensselaer 
Polytechnic Institute. Animal facilities of both institutions have been accredited by the 
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Fig. 8. RPI phantom dimensions and volume capacities per letter. For imaging it is centered
within the 35× 35mm FOV of the SP-MFLI system.

Appendix C: in vitro experiments and sample preparation

The RPI phantom displayed in Fig. 8 is composed of continuous letters “R”, “P” and “I” with
respective volume capacities of 149, 124 and 81 µL. Alexa Fluor 750 (AF750; ThermoFisher
Scientific, A33085) dye was prepared with PBS at 2.08 µM concentration to fill Letters “R”
and “I”, while HITCI (Sigma Aldrich, 252034) at 40 µM was used for letter “P”. The initial
concentration of HITCI was monitored versus AF750 intensity under an external NIR CCD
camera and was diluted with ethanol until matching the intensity of both dyes. After filling
the phantom with the fluorescent dyes, it was covered with a thin layer of clear wrap paper
to minimize evaporation effects, which considering the intended acquisition times should be
minimal.

Appendix D: in vivo sample preparation and additional results

D.1 Ligand labeling. Human Holo Transferrin-Tf (Sigma Aldrich) and Trastuzumab-TZM
(Genentech) were conjugated to AF700 donor only for the Holo Tf probe and both AF700
donor and AF750 acceptor (Life Technologies) for the TZM probe, through monoreactive
N-hydroxysuccinimide ester to lysine residues in the presence of 100mM Na bicarbonate, pH
8.3, according to manufacturer’s instructions. The probes were purified by desalting columns
and Amicon Ultra-4 microconcentrators (Millipore). The degree of labeling of the probes was
assessed by spectrophotometer DU 640 (Beckman Coulter, Fullerton, CA, USA). The average
degree of labeling was no more than 2 fluorophores per Tf or Trastuzumab molecule. All
probes were normalized to concentration 1mg/mL in phosphate-buffered saline pH 7.6 and filter
sterilized.

D.2 Cell culture. Breast cancer cell line AU565 was purchased from ATCC (CRL-2351) and
cultured in RPMI 1640 medium supplemented with 10% FBS in 5% CO2 at 37°C in a humidified
incubator for less than 12 passages.

D.3 Animal experiments. All animal procedures were conducted with the approval of the
Institutional Animal Care and Use Committee at both Albany Medical College and Rensselaer
Polytechnic Institute. Animal facilities of both institutions have been accredited by the American
Association for Accreditation for Laboratory Animals Care International. Tumor xenografts were
generated by injecting 10× 106 AU565 cells in phosphate-buffered saline (PBS) mixed 1:1 with
Cultrex BME (R&D Systems Inc, Minneapolis, MN, USA) into the right inguinal mammary
fat pad of female 4-week old athymic nude mice (NU(NCr)-Foxn1nu, Taconic Biosciences,
Rensselaer, NY, USA). The subcutaneous tumors were allowed to grow for 4-5 weeks and were
monitored daily. Tf-AF700 (40 µg in the volume 100 µL) or TZM-AF700 and AF750 (20 µg and
40 µg respectively) were injected retro-orbitally in anesthetized animals. For imaging, mice were
anesthetized using E-Z anesthesia breathing machine and placed on a heating pad to maintain
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body temperature. The depth of anesthesia was monitored by breathing rate and the absence of
response to a foot pinch.
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American Association for Accreditation for Laboratory Animals Care International. Tumor 
xenografts were generated by injecting 10x106 AU565 cells in phosphate-buffered saline (PBS) 
mixed 1:1 with Cultrex BME (R&D Systems Inc, Minneapolis, MN, USA) into the right 
inguinal mammary fat pad of female 4-week old athymic nude mice (NU(NCr)-Foxn1nu, 
Taconic Biosciences, Rensselaer, NY, USA). The subcutaneous tumors were allowed to grow 
for 4-5 weeks and were monitored daily. Tf-AF700 (40 µg in the volume 100 µL) or TZM-
AF700 and AF750 (20 µg and 40 µg respectively) were injected retro-orbitally in anesthetized 
animals. For imaging, mice were anesthetized using E-Z anesthesia breathing machine and 
placed on a heating pad to maintain body temperature.  The depth of anesthesia was monitored 
by breathing rate and the absence of response to a foot pinch. 
 

Appendix E: in vivo TfAF700 additional results  

 
Figure 9. Intensity and Lifetime reconstructions for Tf-AF700 Mouse experiments 
for 99% (a) and 98% (b) CRs for both NetFLICS-CR and TVRecon methods. 
Detection at the ~760 nm Channel is displayed as a control for reconstruction, since 
little detected fluorescence is expected at this wavelength. (d) Liver and bladder 
areas are respectively indicated in the external CCD image of the sample plane. 
Reconstructed images are overlaid over external CCD grayscale image of the mouse. 
 

Ex
te
rn
al

C
C
D

Liver
Bladder

(c)

98% CR (6 min) 96% CR (11 min)(c)

7
1

9
n

m
 C

h
an

n
el

7
6

0
n

m
 C

h
an

n
el

7
1

9
n

m
 C

h
an

n
el

7
6

0
n

m
 C

h
an

n
el

99% CR (3 min)

7
1

9
n

m
 C

h
an

n
el

7
6

0
n

m
 C

h
an

n
el

(a) (b)

Fig. 9. Intensity and Lifetime reconstructions for Tf-AF700 Mouse experiments for 99% (a)
and 98% (b) CRs for both NetFLICS-CR and TVRecon methods. Detection at the ∼760 nm
Channel is displayed as a control for reconstruction, since little detected fluorescence is
expected at this wavelength. (d) Liver and bladder areas are respectively indicated in the
external CCD image of the sample plane. Reconstructed images are overlaid over external
CCD grayscale image of the mouse.
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Appendix F: in vivo TfAF700 additional analysis of 760nm control channel  

 
 

Figure 10. (a) Pattern 1 widefield raw measurement across wavelength channels. 
Channel 3 represents 719nm and channel 13 760nm. (b) Continuous wave (over 
time) integration of measurement vectors per wavelength channel. (c) Retrieved 
TVAL3 TPSF for maximum intensity pixel (99%CR) located at [ X=98,Y=106] for 
the time domain reconstruction at 760nm. TPSF (blue), IRF (green) and LSQR fit 
(red) are displayed.  

 
 
 
 
 
 
 
 
 
 
 
 
 

0 2 4 6 8 10 12 14 16
Wavelength Channel

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

44000

48000

52000

56000

60000

Ti
m

e 
S

te
ps

(a) (b)

0 50 100 150 200 250 300
Time Channels

0

0.2

0.4

0.6

0.8

1

C
ou

nt
s 

(a
.u

)

760nm max TPSF and Fit

(c)

76
0n

m

71
6n

m

76
0n
m

71
6n

m

TPSF

Fit

IRF

Fig. 10. (a) Pattern 1 widefield raw measurement across wavelength channels. Channel 3
represents 719 nm and channel 13 760 nm. (b) Continuous wave (over time) integration of
measurement vectors per wavelength channel. (c) Retrieved TVAL3 TPSF for maximum
intensity pixel (99%CR) located at [ X=98,Y=106] for the time domain reconstruction at
760 nm. TPSF (blue), IRF (green) and LSQR fit (red) are displayed.



Research Article Vol. 11, No. 10 / 1 October 2020 / Biomedical Optics Express 5420

Appendix G: in vivo TZM reconstructions for 99% and 98% CRs at the two differ-
ent time-points.

Fig. 11. Intensity and lifetime reconstructions for TZM injected athymic nude mouse with
tumor xenograft at 24 (a) and 102 (b) hours post-injection. Reconstructions provided for
both Donor (∼719 nm - green) and Acceptor (∼760 nm - Teal) detection channels for a 99%
and 98% CR.
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Appendix H: in vitro quantified AF700 donor and AF750 acceptor probes 
across detection channels. 

 

Figure 12. (a) Average intensity values for both donor and acceptor. (b) Mean 
lifetimes and their standard deviations are shown per detection channel. Lifetime 
values in peak channels quantified for Donor (~719nm at Channel 3) and Acceptor 
(~760 nm at Channel 13) are highlighted. Note even though AF700 quantification is 
within the same standard deviation from Channel 1 to Channel 8th at ~742 nm. After 
this wavelength little emission from AF700 is expected and therefore the lifetime 
quantification may be inaccurate.  This also applies for Channels 1 to 6 for AF750 
emissions.   
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Fig. 12. (a) Average intensity values for both donor and acceptor. (b) Mean lifetimes and
their standard deviations are shown per detection channel. Lifetime values in peak channels
quantified for Donor (∼719 nm at Channel 3) and Acceptor (∼760 nm at Channel 13) are
highlighted. Note even though AF700 quantification is within the same standard deviation
from Channel 1 to Channel 8th at ∼742 nm. After this wavelength little emission from
AF700 is expected and therefore the lifetime quantification may be inaccurate. This also
applies for Channels 1 to 6 for AF750 emissions.
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Appendix I: TZM raw fluorescent signals across time-points. 
 

 
 
Figure 13. Raw TPSF for Pattern 1 for both Donor and Acceptor channels at 
respective wavelengths of ~719 nm and ~760 nm. Since the Hadamard Ranked basis 
is organized by spatial frequency, Pattern 1 is expected to yield the signal with the 
highest fluorescence intensity. Pattern 1 TPSF is displayed per channel for 24 and 
102 Hours raw TZM in vivo acquisitions.   Note that this is raw data, therefore before 
NetFLICS-CR or the TVRecon inverse solver have recovered the spatial distribution 
of intensity or lifetime. 
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Fig. 13. Raw TPSF for Pattern 1 for both Donor and Acceptor channels at respective
wavelengths of ∼719 nm and ∼760 nm. Since the Hadamard Ranked basis is organized by
spatial frequency, Pattern 1 is expected to yield the signal with the highest fluorescence
intensity. Pattern 1 TPSF is displayed per channel for 24 and 102 Hours raw TZM in vivo
acquisitions. Note that this is raw data, therefore before NetFLICS-CR or the TVRecon
inverse solver have recovered the spatial distribution of intensity or lifetime.
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